首页> 外文OA文献 >Acquiring Domain-Specific Dialog Information from Task-Oriented Human-Human Interaction through an Unsupervised Learning
【2h】

Acquiring Domain-Specific Dialog Information from Task-Oriented Human-Human Interaction through an Unsupervised Learning

机译:通过无监督学习从面向任务的人机交互中获取特定领域的对话信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe an approach for acquiring the domain-specific dialog knowledge required to configure a task-oriented dialog system that uses human-human interaction data. The key aspects of this problem are the design of a dialog information representation and a learning approach that supports capture of domain information from in-domain dialogs. To represent a dialog for a learning purpose, we based our representation, the form-based dialog structure representation, on an observable structure. We show that this representation is sufficient for modeling phenomena that occur regularly in several dissimilar taskoriented domains, including informationaccess and problem-solving. With the goal of ultimately reducing human annotation effort, we examine the use of unsupervised learning techniques in acquiring the components of the form-based representation (i.e. task, subtask, and concept). These techniques include statistical word clustering based on mutual information and Kullback-Liebler distance, TextTiling, HMM-based segmentation, and bisecting K-mean document clustering. Withsome modifications to make these algorithms more suitable for inferring the structure of a spoken dialog, the unsupervised learning algorithms show promise.
机译:我们描述了一种获取特定域对话知识的方法,该知识需要配置使用人与人交互数据的面向任务的对话系统。此问题的关键方面是对话框信息表示的设计和支持从域内对话框捕获域信息的学习方法。为了表示出于学习目的的对话框,我们将基于表格的对话框结构表示形式设为可观察的结构。我们表明,这种表示形式足以建模在几个不同的面向任务的领域中经常发生的现象,包括信息访问和问题解决。为了最终减少人工标注的工作量,我们研究了在获取基于表单的表示形式的组件(即任务,子任务和概念)中使用无监督学习技术的情况。这些技术包括基于互信息和Kullback-Liebler距离的统计词聚类,TextTiling,基于HMM的分割以及对分K均值文档聚类。通过进行一些修改以使这些算法更适合于推断口头对话的结构,无监督学习算法显示出了希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号